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Abstract 
In this work we propose a method for protein 

classification based on a texture descriptor, called local 
phase quantization that utilizes phase information computed 
from the image extracted from the 3-D tertiary structure of a 
given protein. To build this texture, the Euclidean distance 
is calculated between all the atoms that belong to the 
protein backbone. Moreover, we study classification fusion 
with a state-of-the-art method for describing the proteins: 
the Chou’s pseudo amino acid descriptor. Our experiments 
show that the fusion between the two approaches improves 
the performance of Chou’s pseudo amino acid descriptor. 
We use support vector machines as our base classifier. The 
effectiveness of our approach is demonstrated using four 
benchmark datasets (protein fold recognition, DNA-binding 
proteins recognition, biological processes and molecular 
functions recognition/enzyme classification).  

Keywords: protein classification; texture descriptors; 
primary structure; local phase quantization; support vector 
machines. 
 

1 Introduction 
  Finding effective feature extraction methods is still 

one of most important ongoing issues in protein 
classification[4]. There are two general views on how 
extraction should be accomplished: the indirect and direct 
methods. Indirect representation of protein spatial structure, 
is based on the widely held assumption that structural 
features are closely related to sequence composition [7, 8]. 
Thus this method extracts features from a sequence. Perhaps 
the most famous indirect representation is pseudo amino 
acid (PseAA) composition [10], with its many variants, see, 
for instance, [11-14]. In the direct approach feature 
extraction is accomplished via an analysis of the protein's 
spatial structure. The direct method of representation can be 
grouped into three general types: one based on the spatial 

atom distribution [15], a second on its topological structure 
[16], and a third on its geometrical shape [17].  

Generally, the indirect representation is lower in 
computational cost but provides a higher dimensional 
feature set, whereas the direct representation is higher in 
computational cost but provides a lower dimensional feature 
set. While the lower computational cost involved in the 
indirect approach is desirable, the higher dimensional 
representation requires the application of the most advanced 
techniques in pattern recognition, see, e.g., [3, 18-20].  

In this paper we apply a new pattern recognition 
techniques that combines an indirect (Chou’s amino acid) 
descriptor with a direct representation (namely, protein 
spatial structure features extracted from the distance matrix). 
The experimental results show that combining direct and 
indirect descriptors using an ensemble of classifiers 
outperforms previous standalone approaches. 

The remainder of this paper is organized as follows. 
In section 2, we introduce our feature extraction methods 
and ensemble approach. In section 3, we report experimental 
results obtained on four benchmark databases. Finally, in 
section 4, we summarize results and draw a few conclusions. 
 

2 Proposed approach 
In [9] the authors show that Haralick features and the 

Radon transform produce a good texture descriptor for the 
distance matrix of the protein backbone. The main aim of 
this work is to propose a single set of texture features that 
works well in this problem. The protein descriptor used in 
our experiments is Chou’s well-known pseudo amino acid 
descriptor [11]. The architecture of our best performing 
system is presented in figure 2.  A general description of 
each step in our approach is provided below.   
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2.1 Data extraction 

In step 1, we extract features from the distance matrix of the 
protein backbone. Diverse protein molecules differ in the 
number, type, physicochemical properties of amino acid 
residues, and their distribution along the polypeptide chain. 
These distinctions produce the diversity of protein spatial 
structures. Unfortunately, how these distinctions work 
together is not fully understood. This fact brings out the 
difficulty of describing, analyzing, and characterizing protein 
conformation.  

Instead of considering all atoms, many researchers use 
the protein backbone to characterize the whole protein 
structure. Protein backbone is composed sequentially only by 
Cα atoms and reflects the topology and the folding of protein 
[21]. An effective representation of the backbone is the 
distance matrix (DM) which contains sufficient information  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Proposed system for protein classification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Examples of different classes of the BINDING dataset. 

of the proteins structure because the original 3D backbone 
structure can be reconstructed from DM using distance 
geometry methods [22].  

Given a protein Pi, its backbone can be described as a 
vector { },1 ,2 ,, , ,i i i

i NB α α α= Coor Coor Coor
C

, where 

is coordinates vector of the nth ,
i

nαCoor α atom. Then its 
DM is defined as the matrix 

( ) ( ){ }, ,, ,i i
i pdm p q dist α α= = Coor Coor qDM where 

( )dist ⋅ is simply the Euclidean distance between the two set 
of coordinates (considered as a vector) and 1 ,p q N≤ ≤ .1

 
Since DM maintains sufficient 3-D structural 

information, similar protein backbones are expected to have 
such distance matrices with similar properties. In our model, 
DM is regarded as a grayscale image from which the 

                                                           
1 The matlab code for extracting the distance matrix is 
available at http://bias.csr.unibo.it/nanni/DM.zip 
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extracted features are invariant to rotation and translation. 
We show an example of DM of two proteins in Figure 2. 

2.2 Feature extraction 
In step 2 we extract features using local phase 

quantization and Chou's pseudo amino acid composition 
(PseAA). Local phase quantization is applied to the DM. 
Chou's pseudo amino acid composition (PseAA) is created 
from the AAindex [23] as described below. 

Local phase quantization  
The Local Phase Quantization (LPQ) operator was 

originally proposed by Ojansivu and Heikkila as a texture 
descriptor [24]. LPQ is based on the blur invariance 
property of the Fourier phase spectrum. It uses the local 
phase information extracted using the 2-D short-term 
Fourier transform (STFT) computed over a rectangular 
neighborhood at each pixel position of the image. In LPQ 
only four complex coefficients are considered, 
corresponding to 2-D frequencies. For more mathematical 
details, refer to [24]. In our experiments, we use the original 
code shared by the inventors of LPQ. We use the images 
resized to 100×100 before the feature extraction step. 

Chou's pseudo amino acid composition (PseAA) 
In [25] a sequence-based algorithm is presented that 

combines the augmented Chou's pseudo amino acid 
composition based on auto covariance. A set of pseudo 
amino acid based features are extracted from a given protein 
as the concatenation of the 20 standard amino acid 
composition values and m (where m=20) values that reflect 
the effect of the sequence order: m is a parameter denoting 
the maximum distance between two considered amino acids 
i, j: 

 

 
 
 
where A(k) denotes the index of the amino acid in the 

kth position of the protein, Len is the length of the protein, d 
denotes the selected physicochemical property, and the 
function index(i,d) returns the value of the property d for the 
amino acid i.  

Md and Vd are normalization factors denoting the 
average and the variance of the physicochemical property d 
on the 20 amino acids: 

 

 
 
In our experiments, we create 50 different Chou's 

pseudo amino acid feature vectors using 50 different 
psychochemical properties extracted from the AAindex [23]. 
A different support vector machine is trained for each 
Chou's pseudo amino acid feature vector. The 50 classifiers 
are then combined using the sum rule. 

2.3 Classification  
The classifier we use in our experiments is the well-

known support vector machine (SVM) [26]. SVM finds the 
hyperplane that separates the training patterns of two classes 
by maximizing the distance between the hyperplane and the 
two classes. Where it is not possible to find a linear decision 
boundary, a kernel function can be used that projects the 
data onto a higher-dimensional feature space. Commonly 
used kernels include polynomial kernels and radial basis 
function kernels. All features used for training SVM are 
linearly normalized to [0 1]. In our work we use the OSU 
matlab toolbox (http://sourceforge.net/projects/svm/). 

 
3 Datasets 

All experiments are performed using the following 
datasets: Protein fold recognition (FOLD), DNA-binding 
proteins (DNA), GO dataset (GO), and Enzyme (ENZ). 
Below we briefly describe the main characteristics of each 
and the evaluation protocol we use in the classification stage 
of our experiments. 

Protein fold recognition (FOLD)  
The FOLD database used in our experiments is 

derived from the work of [1]. The trainin set contains 313 
proteins and testing set contains 385. The sequence 
similarities are less 35% and 40%, respectively, and the 
class numbers are both 27. The training set is used to build 
the classifier models, and we independently use the testing 
set to evaluate performance. This testing protocol is widely 
used in the literature for this dataset. The entire database can 
be downloaded from http://ranger.uta.edu/~chqding/protein/.  

DNA-binding proteins (DNA) 
The DNA dataset is reported in [27] and contains 118 

DNA-binding Proteins and 231 Non-DNA-binding proteins. 
These proteins have less than 35% sequence identity 
between each pair. DNA-binding proteins are proteins that 
are composed of DNA-binding domains and thus have a 
specific or general affinity for either single or double 
stranded DNA. Sequence-specific DNA-binding proteins 
generally interact with the major groove of B-DNA. For this 
database we use the ten-fold cross validation protocol.  

GO dataset (GO) 
This dataset was reported in [28]. It was created by 

collecting proteins according to GO annotations, 
distinguishing between the biological processes “immune 
response” (33 proteins), “DNA repair” (43 proteins), and 
between the molecular functions “substrate specific 
transporter activity” (39 proteins)  and “signal transducer 
activity” (53 proteins). The presence of highly similar 
proteins in the same class was avoided by removing 
sequences having more than 30% identity. We randomly 
extract 20% of the proteins for building the testing set, and 
this procedure is repeated 50 times. The results are then 
averaged. 
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Enzyme (ENZ) 
This dataset was reported in [28]. The PDB archive 

was used to retrieve this dataset. It includes proteins 
annotated as enzymes: 381 hydrolases and 713 different 
enzymes. For this database we use the ten-fold cross 
validation protocol.  
 
4 Experimental results 
In our experiments, performance is evaluated using the area 
under the Receiver Operating Characteristic (ROC) curve. 
The area under the ROC curve (AUC2) [29] is a scalar 
measure for evaluating performance. AUC can be 
characterized as the probability that the classifier will assign 
a higher score to a randomly picked positive sample as 
compared to a randomly picked negative sample. Because 
the GO dataset is a four class problem, the AUC is 
calculated using the one versus all approach, i.e., a given 
class is considered as “positive” and all the other classes are 
considered as “negative.”  The average AUC is then 
reported. 

 In Table 1, the experimental results are reported 
(AUC) using the following methods: 

• (Shi & Zhang, 2009): the method reported in [9], 
where few selected Radon features and Haralick 
feature are extracted from the distance matrix; 

• PSEAA: the Chou's pseudo amino acid composition 
method explained in section 2.3; 

• LBP:  standard Local Binary Pattern descriptor 
with16 neighborhoods and radius of the operator=2 
[30]; 

• LTP: standard Local Ternary Pattern descriptor 
with16 neighborhoods and radius of the operator=2 
[30]  

• DLBP: dominant Local Binary Pattern descriptor 
with16 neighborhoods and radius of the operator=2 
and the 90% of the bins are selected [31]; 

• LPQ(x): the local phase quantization descriptor 
with the radius of the operator equal at x; 

• LPQ(1+2+3+4): a combination by sum rule of 
LPQ(1), LPQ(2), LPQ(3) and LPQ(4); 

• LPQ(1+2+3+4)+K×PseAA: fusion by weighted 
sum rule between PseAA and LPQ(1+2+3+4). The 
weight of PseAA is K, while the weight of 
LPQ(1+2+3+4) is 1. Before the fusion the scores of 
the two methods are normalized to mean 0 and 
standard deviation 1. 
 
 

 
 
 
 

                                                           
2 EUC is implemented as in dd_tools 0.95 
davidt@ph.tn.tudelft.nl 

 
From the results reported in table 1, the following 

conclusions can be drawn: 
• The LPQ texture descriptor works well in this 

particular application; 
The multiresolution approach based on the 
combination of different LPQs with different radii of 
the operator outperforms the stand-alone LPQ; 

• The features used in [9], a set of selected Haralick 
features and moments extracted from the Radon 
coefficients, works particularly well in the BINDING 
dataset, but in the other three datasets LPQ 
outperforms [9].  

• In each dataset the fusion approach outperform 
PseAA. Notice that in the FOLD dataset, where the 
structural classification problem is addressed, the 
features extracted from the distance matrix work very 
well. Obviously, in this particular problem, the 
structural classification of the distance matrix brings 
more information than the amino-acid sequence 
(since the protein backbone is very important in this 
task). 

 
Contrarily to what was reported in [32], we have 

shown that a stand-alone texture descriptor can be used as an 
efficient feature extraction from the DM. LPQ extracts a 
reliable set of features when using the entire DM, and its 
fusion with a standard protein descriptor as PseAA creates a 
high performance system. 

To validate the effectiveness of our proposed method, 
we compare it with several other methods reported in the 
literature using the FOLD dataset. We also employ the same 
testing protocols reported in the original paper [1]. The 
comparison results are listed in Table 2. In [1], the authors 
propose using six kinds of features denoted by C,S,H,P,V 
and Z. The letter C is just the popular amino acid 
composition, while the left five letters indicate the features 
of Polarity, Polarizability, Normalized Van Der Waals 
volume, Hydrophobicity and Predicted secondary structure 
respectively. In [2, 3] the authors use the same set of 
features as [1], but they experiment with different classifier 
systems. We report the best performing system. In [5] 
CSHPVZ is combined with bigram-coded feature (B) and 
spaced bigram-coded feature (SB). In [6], the features used 
by [5] are used but the classifier system uses fusion. The 
results reported in table 2 demonstrate that our proposed 
system, specifically LPQ (1+2+3+4), outperforms other 
reported methods with the highest accuracy of classification. 
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4.  Conclusion and Discussion 

This reported a study of texture descriptors for 
training an ensemble of classifiers for protein classification. 
The texture descriptors are extracted from the 2-D distance 
matrix obtained from the 3-D tertiary structure of a given 
protein. Our method combines direct and indirect feature 
extraction methods by fusing the texture descriptors and the 
pseudo Chou’s amino acid descriptor. The ensemble system  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
DATASETS 

FOLD BINDING GO ENZYME 

F
E

A
T

U
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X
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R
A

C
T

IO
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PseAA 51.95 90.96 69.53 69.82 

(Shi & Zhang, 2009) 72.99 88.86 55.34 62.97 

LBP 50.91 73.82 55.70 61.10 

LTP 56.62 72.20 56.50 62.10 

DLBP 55.84 83.67 59.30 63.00 

LPQ (1) 77.14 85.58 67.18 57.69 

LPQ (2) 85.45 82.42 66.44 60.75 

LPQ (3) 84.68 82.09 67.63 65.38 

LPQ (4) 85.45 81.34 68.67 63.86 

LPQ (1+2+3+4) 87.27 85.48 69.43 65.56 

LPQ (1+2+3+4) + 
1×PseAA 

85.19 91.02 74.58 72.21 

LPQ (1+2+3+4) + 
2×PseAA 

78.70 91.76 73.46 72.81 

LPQ (1+2+3+4) + 
3×PseAA 

73.25 91.98 72.79 72.34 

 
 

Table 1. Comparison of the different methods. 

 
 
proposed in this paper was tested on four datasets, and the 
experimental results show that our proposed method 
outperforms stand-alone approaches.  Method 

Accuracy 
(%) 

(Ding & Dubchak, 2001) [1] 56.50 

(Chinnasamy et al., 2005)  [2] 58.18 

(Shi et al., 2006) }[3] 61.04 

(Huang et al., 2003) [5] 65.50 

(Lin et al., 2007) [6] 69.60 

(Shi & Zhang, 2009) [9] 72.99 

Our LPQ (1+2+3+4) method 87.27 

 

The best practical finding revealed in this work is that 
a combination of texture descriptors extracted from the 2-D 
distance matrix and amino acid descriptors boost 
performance in classifier systems.  

In the future, we plan on experimenting with more 
texture descriptors. Preliminary experiments have 
demonstrated promising results [32]. In particular we are 
looking at using a holistic method based on the 
neighborhood preserving embedding method (NPE)3 [33]. 
This is a subspace learning algorithm aimed at preserving 
the global Euclidean structure of the space. Thus far we 
have obtained 40% accuracy using the FOLD dataset. We 
are also examining a recently proposed Gabor based 
descriptor [34]. Thus far we have  obtained 66% accuracy 
on the FOLD dataset. Both these results consider extracting 
features from subwindows of the distance matrix using 
random subspace as the classifier. 

Table 2. Best reported results in the literature 
using the FOLD dataset. 

 
 

                                                           
3 The matlab code is available at 
http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html 
(Accessed 15 July 2009) 
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