
A Combination of Methods for Building Ensembles of
Classifiers

L. Nanni,1 S. Brahnam,2 and A. Lumini3

1 DIE - University of Padua, Via Gradenigo, 6 - 35131- Padova – Italy.
2Missouri State University, 901 S. National, Springfield, MO 65804, USA

3DEIS, Università di Bologna, Via Venezia 52, 47521 Cesena, Italy.

Abstract - In this paper we make an extensive study of
different methods for building ensembles of classifiers. We
examine variants of ensemble methods that are based on
perturbing features. We illustrate the power of using these
variants by applying them to a number of different problems.
We find that the best performing ensemble is obtained by
combining an approach based on random subspace with a
cluster-based input decimated ensemble and the principal
direction oracle. Compared with other state-of-the-art stand-
alone classifiers and ensembles, this method consistently
performed well across twelve diverse benchmark datasets.
Another useful finding is that this approach does not require
parameters to be carefully tuned for each dataset (in contrast
to the fundamental importance of parameters tuning when
using SVM and extreme learning machines), making our
ensemble method well suited for practitioners since there is
less risk of over-training. Another interesting finding is that
random subspace can be coupled with several other ensemble
methods to improve performance.

Keywords: f input decimated ensembles, random subspace,
multiclassifier systems, pattern classification.

1 Introduction
 Until recently, science worked with relatively small sets of
data since collecting measurements was difficult, time
consuming, and expensive. With increasingly cheaper and
more powerful forms of computing and data storage, scientists
in the 21st century are now producing far more information
than can be processed. To truly assist practitioners in other
fields, researchers in machine intelligence need to develop
general purpose classification methods that are capable of
handling a broad variety of problems and data types. These
classification methods also need to be easy to use (requiring,
for instance, little parameter tuning), and they need to compete
well with less flexible state-of-the-art methods that have been
crafted for very specific problems.

One of the most promising techniques for improving
flexibility and accuracy is to build systems that combine
multiple classifiers [1]. The main idea behind a multiclassifier
system is to average the hypotheses of a diverse group, or
ensemble, of classifiers to produce a better approximation to a

true hypothesis [2]. In this paper our aim is to compare several
approaches for building ensembles of classifiers to find a
method that works well across diverse datasets without careful
parameters tuning for each dataset. In our investigation, we
find that the best general purpose method combines an
approach based on a random subspace with a cluster-based
input decimated ensemble and the principal direction oracle.
We find that this method compares very well with several
state-of-the-art stand-alone and ensemble methods.

The remainder of this paper is organized as follows. In section
2 we describe several methods for constructing ensembles of
classifiers. In section 3 we present our best ensemble method.
In section 4 we apply our ensemble method to a diverse set of
benchmark datasets to examine its flexibility and accuracy.
Moreover, results of several state-of-the-art stand-alone and
ensembles methods are compared with our approach using the
same datasets. Finally, in section 5, we summarize our results
and make suggestions for further research.

2 Multiclassifier Systems
 A simple classifier takes raw data from an input source,
preprocesses and transforms it to reduce noise and to enhance
correlation in the data, and then extracts relevant features.
Classifier parameters are then continuously fine-tuned as the
classifier optimally learns from a training set to assign
predefined labels to unknown samples in a testing set. A
multiclassifier system, in contrast, predicts class labels from
previously unseen records in the testing set by aggregating
predictions made by an ensemble of simple classifiers. Some
common methods for aggregating the decisions of multiple
classifiers include majority voting, sum rule, max rule, min
rule, product rule, median rule, and Borda count are some of
the most common methods [2].

There are several general approaches for constructing
multiclassifiers. One approach is to focus on methods for
dividing or perturbing either the patterns or the features in the
training set. Another approach is to focus on methods for
either combining the results of different classifier types or
perturbing the parameters of a set of classifiers of the same
type. Combinations of these approaches, or hybrid systems,
have also been proposed. The three basic steps involved in

constructing multiclassifier systems using the first approach
are 1) generate K new training sets starting from the original
training set; 2) train a different classifier for each of the K new
training sets; and 3) combine the K classifiers using a decision
rule.

When ensembles are composed using pattern perturbation,
new training sets are constructed by changing the patterns in
the original training set. This is usually done iteratively.
Common methods for constructing new training sets include
Bagging [3], Class Switching [4], Decorate [5], and
Boosting/AdaBoost [6]. In Bagging [3] new training sets,
S1,…, SK, are subsets of the original training set. In Arcing [7]
misclassified patterns are used to calculate the patterns
included in each new training set. In Class Switching [4] K
training sets are randomly created by changing the labels of a
subset of the training set, and in Decorate [5] the training sets
are constructed by adding patterns that the combined decision
of the multiclassifier system misclassifies. In Boosting/
AdaBoost [6] each training pattern is given a weight that
increases at each iteration for patterns that are most difficult to
classify.

Feature perturbation generates new training sets by changing
the feature set. Common methods for perturbing features
include Random Subspace [8], Cluster-based Pattern
Discrimination [9], and Input Decimated Ensemble [10]. In
Random Subspace [8] K new training sets are subsets of the
feature set. In Cluster-based Pattern Discrimination[9] K new
training sets are built by independently partitioning the classes
into clusters and then by defining different features for each
cluster. In Input Decimated Ensemble [10] the new training
set Si is obtained using the principal component analysis
(PCA) transform which is calculated on the training patterns
that belong to class i. One drawback using Input Decimated
Ensemble is that the size of the ensemble is bounded by the
number of classes. This limitation is avoided in [11], where
the training patterns are partitioned into clusters, and the PCA
transform is then performed on the training patterns within
each cluster. In the case of combining different classifiers,
either different classifiers are used to build the ensemble or
classifiers of the same type are used but with different
parameter settings. In either case, the classifiers are trained on
the same training set and the decisions are combined.
Examples of systems that combine different types of classifiers
include [12], where the decisions of five different classifiers
(Logistic Regression, Linear Discriminant Analysis, Quadratic
Discriminant Analysis, Naive Bayes, and K-Nearest
Neighbors) are combined using a weighted-vote decision rule
to predict which genes respond to stress.

Hybrid methods combine different perturbation methods.
Some examples include Random Forest [13], Rotation Forest
[14], and RotBoost [15]. Random Forest [13] uses a bagging
ensemble of Decision Trees, where a random selection of
features are used to split a given node. In Rotation Forest

[14], an ensemble of Decision Trees is used, where K new
training sets are constructed by applying several PCA
projections onto subsets of the training patterns. Several
researchers have also reported the value of using Independent
Component Analysis (ICA) as a feature transform for building
a rotation forest ensemble (see, for example, [11]). In
RotBoost [15] ensembes are constructed from Decision Trees
that combine Rotation Forest and Adaboost. RotBoost has
been shown to outperform Bagging, MultiBoost, Rotation
Forest, and AdaBoost [15]).

3 System architecture
After extensive testing, we found that the best general purpose
classifier system is a multiclassifier system that combines the
random subspace supervised approach with a cluster based
input decimated ensemble and the principal direction oracle.
In this section, we provide a more detailed description of the
ensemble methods used in our experiments. The classifier
used in our ensembles, is the decision tree with pruning,
where the information gain is used as the binary splitting
criterion [16].

The proposed algorithm can be outlined as follows ;

1. Extract a set of T subspace using the Learn.MF algorithm;
2. Perform a linear hyperplane split of training samples by

principal direction linear oracle;
3. Train a cluster-based Input Decimated Ensemble;
4. Combine the scores of the classifiers that built the

ensemble by sum rule.1

3.1 System ensemble methods
Below we provide a short description of the various ensemble
methods used in our experiments.

Random Subspace (RS0) [8] reduces dimensionality by
randomly sampling subsets of features (50% of all the features
in our experiments). RS modifies the training dataset by
generating K (K=50 in our experiments) new training sets and
by building classifiers using these modified training sets. The
results are combined using the sum rule

Learn.MF (LM) [17] is a variant of random subspace. It trains
an ensemble of classifiers with a subset of features, randomly
drawn from a feature distribution, which is iteratively updated
to favor the selection of those features that were previously
undersampled. In our experiments, each subspace contains
50% of the original features.

Principal direction linear oracle (PD) [18] is an ensemble
classifier used to invoke a linear hyperplane split of training
samples. It is a variant of random oracle. The data of each of

1 We want to stress that all the parameters of the proposed system

are the same in all the datasets without any ad hoc dataset tuning.

the two subsets (obtained by splitting the training set using the
hyperplane) are used to train two different classifiers. For each
test pattern, the hyperplane is used to choose the best classifier
for the given pattern.

Input Decimated Ensemble (IDE) is a method for constructing
ensembles based on pattern perturbation. In our experiments
we use a variant of IDE, proposed in [11], where each
classifier is trained using the feature transform Neighborhood
Preserving Embedding (NPE) (see [19] for details) on a
subset, randomly extracted, of the training patterns, with each
subset containing patterns of only one class. The different
classifiers are combined by sum rule. The MATLAB code
used for NPE is freely available at http://www.cs.uiuc.
edu/homes/dengcai2/Data data.html.

4 Experimental results
For comparing our proposed approaches with other state-of-
the-art methods, we report results obtained on the following
twelve benchmark datasets, most of which are available in the
UCI Repository (a detailed description of these databases is
available on the UCI machine learning website at
http://archive.ics.uci.edu/ml/): 1) The breast cancer dataset
(BR); 2) The heart disease dataset (HE); 3) The Pima Indians
Dataset (PI); 4) The Wisconsin breast dataset (WD); 5) A
erythemato-squamous disease classification dataset (DE); 6)
The Ionosphere Data Set (IO); 7) The vehicle silhouettes
dataset (VE); 8) The vowel dataset (VO); 9) The German
Credit (CG); 10) The wine dataset (WI); 11) The sonar dataset
(SO); and 12) The HIV dataset2 (HI).

The evaluation protocol used in our experiments is fairly
standard. As suggested by many classification approaches, the
features in these datasets are linearly normalized between 0
and 1. Results using these datasets are averaged over ten
experiments. For each experiment we randomly resample the
learning and the testing sets (containing respectively half of
the patterns) while maintaining the distribution of the patterns
in the classes. This is repeated ten times. The results are
reported as the error area under the ROC curve (AUC).

In the first set of experiments, we compare several approaches
for building ensembles of classifiers using a feature
perturbation approach. Several classifiers are tested for each
method:
• Support vector machine (OS): where the best kernel and the

best set of parameters are chosen in each dataset;
• RotationBoosting (RB): i.e., the method proposed in [15], in

our experiments, 50 classifiers are combined;

2 Dataset used in T. Rögnvaldsson and L. You. "Why Neural
Networks Should Not Be Used for HIV-1 Protease Cleavage Site
Prediction". Bioinformatics, 20, pp. 1702-1709 (2004) after the
orthonormal encoding the data are projetced by PCA in a 50-
dimensional space

• Our improved version of IDE [11] (DE): where each class is
partitioned into several clusters, see section 3.1.

• Edited (ED), the ensemble based on adaboost of neural
networks proposed in [20], where it is shown that it
outperform the standard rotation forest.

In Table 1 we report the performance obtained by:
• SA: the stand-alone classifiers are used;
• RS: a random subspace ensemble of 50 classifiers;
• RR: the supervised subspace approach of [21] is used to

create an ensemble of 50 classifiers. In this method the
features are chosen according to their importance
calculated using the mutual information.

• LM: the method Learn++.MF (see section 3.3) is used to
build an ensemble of 50 classifiers.

The column Rank is reporting the average rank in the different
datasets of the different classifiers (e.g., if a classifier always
obtains the best performance in each dataset, its rank is 1).

Analyzing the results reported in Table 1, we can draw the
following conclusions:
• The best performing ensemble methods are LM-DE and RS-

OS.
• None of the tested classifiers generalizes better than any of

the others, i.e., none outperforms any of the others across
all the datasets.

• It is very interesting to note that RS ensembles prove quite
useful; the RS-RB outperforms stand-alone RB, and the
RS- OS outperforms stand-alone OS.

• RS-OS outperforms LM-DE; however, we want to stress the
LM-DE uses the same parameters set in all the datasets.

In Table 2 we try to improve LM-DE performance in the
following way:
• Missing: as proposed in [22], where a small percentage

(5%) of features are replaced by mean imputation. In this
way we create 50 different training set for building an
ensemble of classifiers.

• Switch, it is the switching method proposed in [4]; also in
this case 50 classifiers are built.

• PD: the principal direction linear oracle [18].
• RAND: the random spherical oracle where each method is

based on 50% of the original features [23].

Analyzing the results reported in Table 2, we can draw the
following conclusion: only PD improves (and only very
slightly) the performance of LMF-DEC. In [24] it is shown
that many types of classifier ensembles are improved by
random oracle (one exception is the rotation forest). In our
opinion, the performance of LMF-DEC is very high, so it
probably could not be improved.

Table 1. Experimental results #1: Comparison of several approaches for building ensembles of classifiers.

Table 2. Experimental results #2: comparison of methods for improving LMF-DEC.

 HE SO PI IO BR VE VO WD CG WI HI DE RANK
LM-DE 0.919

5
0.932

7
0.819

8
0.988

2
0.991

2
0.947

9
0.992

7
0.995

6
0.805

0
0.999

1
0.959

3
0.999

1
2.8

OS 0.914
6

0.959
5

0.822
4

0.979
9

0.992
5

0.942
5

0.987
3

0.997
1

0.813
4

0.998
4

0.964
7

1.000
0

2.6

Missing 0.921
2

0.913
8

0.817
9

0.983
3

0.991
6

0.938
6

0.991
8

0.994
3

0.812
1

0.999
1

0.958
4

0.999
2

3.3

Switch 0.898
8

0.893
1

0.808
1

0.985
3

0.989
5

0.941
2

0.990
8

0.991
8

0.792
4

0.998
8

0.936
1

0.999
5

4.8

PD 0.918
0

0.940
8

0.814
6

0.988
2

0.991
4

0.948
4

0.993
9

0.995
9

0.807
6

0.999
3

0.958
4

0.999
1

2.7

RAND 0.917
7

0.918
0

0.806
4

0.983
2

0.991
4

0.940
1

0.984
9

0.996
1

0.810
4

0.998
8

0.957
2

0.998
9

4.5

 HE SO PI IO BR VE VO WD CG WI HI DE RANK

SA RB 0.914
0

0.915
6

0.809
4

0.981
2

0.991
1

0.939
4

0.994
7

0.996
8

0.787
5

0.997
0

0.951
5

0.9998 9.75

OS 0.894
3

0.952
2

0.824
1

0.981
1

0.992
5

0.946
0

0.992
9

0.996
2

0.810
4

0.998
2

0.954
4

0.9995 6.58

RS RB 0.920
6

0.933
1

0.817
0

0.984
7

0.991
9

0.939
6

0.995
1

0.996
1

0.798
2

0.999
0

0.957
3

0.9995 6.66

DE 0.920
3

0.919
8

0.818
1

0.986
4

0.991
3

0.944
6

0.992
8

0.995
6

0.810
2

0.999
2

0.958
9

0.9986 6.66

ED 0.919
2

0.928
4

0.812
8

0.983
0

0.992
4

0.912
0

0.988
2

0.995
2

0.802
8

0.998
9

0.955
2

0.9997 8.66

OS 0.914
6

0.959
5

0.822
4

0.979
9

0.992
5

0.942
5

0.987
3

0.997
1

0.813
4

0.998
4

0.964
7

1.0000 5.25

RR RB 0.908
8

0.915
2

0.822
2

0.984
4

0.992
7

0.927
2

0.991
4

0.995
9

0.797
8

0.998
6

0.958
1

0.9995 7.91

DE 0.906
2

0.918
1

0.824
3

0.985
4

0.992
4

0.929
4

0.986
5

0.995
2

0.809
3

0.998
6

0.960
2

0.9987 8.25

ED 0.907
0

0.944
5

0.820
0

0.981
9

0.993
4

0.904
2

0.976
9

0.994
5

0.802
9

0.998
6

0.957
2

0.9993 9.00

OS 0.897
1

0.978
4

0.818
7

0.978
4

0.993
0

0.925
8

0.976
7

0.997
6

0.807
9

0.998
5

0.963
1

0.9995 7.66

LM RB 0.913
2

0.935
4

0.819
5

0.983
0

0.992
0

0.941
5

0.995
4

0.996
4

0.794
0

0.998
8

0.956
8

0.9998 6.83

DE 0.919
5

0.932
7

0.819
8

0.988
2

0.991
2

0.947
9

0.992
7

0.995
6

0.805
0

0.999
1

0.959
3

0.9991 6.16

ED 0.921
5

0.927
7

0.814
7

0.981
6

0.992
3

0.913
5

0.989
9

0.995
6

0.800
7

0.998
7

0.954
1

0.9997

8.91

OS 0.913
6

0.960
4

0.818
4

0.981
1

0.992
5

0.945
1

0.989
4

0.995
8

0.803
4

0.998
2

0.966
6

1.0000 6.66

Table 3. Experimental results #3: comparison of methods for pruning LMF-PDO-DEC.

Table 4. Experimental results #4: comparison of our approach with several other state-of-the-art approaches.

 HE SO PI IO BR VE VO WD CG WI HI DE RANK AVE
LM-PD-
DE

0.918
0

0.940
8

0.814
6

0.988
2

0.991
4

0.948
4

0.993
9

0.995
9

0.8076 0.9993 0.9584 0.9991 5.2 0.9463

OS 0.914
6

0.959
5

0.822
4

0.979
9

0.992
5

0.942
5

0.987
3

0.997
1

0.8134 0.9984 0.9647 1.0000 3.8 0.9477

FUS 0.917
7

0.949
7

0.822
2

0.987
1

0.992
0

0.945
6

0.996
1

0.996
8

0.8103 0.9996 0.9605 0.9997 3.5 0.9481

Real 0.873
4

0.891
0

0.898
7

0.915
6

0.770
1

0.801
0

0.974
7

0.980
4

0.988
8

0.990
8

0.902
0

0.927
1

0.987
7

0.990
9

0.993
8

0.995
0

0.7315
0.7330

0.9363
0.9348

Gentle 0.882
7

0.895
7

0.907
8

0.925
0

0.770
7

0.792
0

0.970
8

0.977
6

0.985
7

0.989
8

0.916
5

0.924
6

0.989
1

0.990
7

0.994
7

0.995
5

0.7449
0.7598

0.8885
0.9963

0.9331
0.9344

0.9970
0.9992

13.2
10.3

0.9151
0.9317

Modest 0.874
1

0.897
1

0.897
9

0.916
9

0.791
9

0.801
8

0.968
7

0.975
8

0.987
7

0.990
6

0.741
5

0.817
2

0.435
8

0.444
7

0.993
6

0.995
9

0.6895
0.7017

0.9877
0.9955

0.9337
0.9426

0.8354
0.8743

15.0
12.3

0.8448
0.8628

AdaN 0.889
3

0.920
6

0.906
6

0.935
1

0.784
8

0.818
9

0.960
1

0.977
7

0.986
5

0.990
7

0.930
3

0.936
9

0.989
0

0.982
7

0.993
5

0.995
9

0.7167
0.7832

0.9810
0.9990

0.9543
0.9568

0.9975
0.9997

12.5
7.4

0.9241
0.9414

ELM 0.887
9

0.916
1

0.780
8

0.899
1

0.819
3

0.822
4

0.893
0

0.975
2

0.993
8

0.993
2

0.911
9

0.926
5

0.907
9

0.956
8

0.991
4

0.995
5

0.7589
0.8073

0.9906
0.9981

0.8218
0.9584

0.9924
0.9995

13.2
8.0

0.8958
0.9373

GP 0.903
0

0.916
6

0.941
1

0.948
3

0.826
8

0.821
4

0.971
1

0.982
1

0.992
4

0.991
4

0.946
2

0.936
0

0.983
3

0.995
1

0.996
1

0.996
4

0.8017
0.8040

0.9980
0.9980

0.9630
0.9575

0.9997
1.0000

6.4
5.6

0.9435
0.9456

Gasen 0.844
4

0.920
1

0.822
3

0.889
7

0.800
3

0.821
9

0.933
8

0.983
3

0.986
5

0.992
1

0.928
5

0.943
8

0.962
3

0.988
4

0.986
9

0.997
0

0.7351
0.8107

0.9931
0.9990

0.9177
0.9547

0.9971
1.0000

14.2
5.3

0.9090
0.9417

RA-we

0.912
0

0.918
9

0.885
7

0.879
4

0.815
9

0.810
1

0.947
6

0.967
4

0.990
8

0.991
4

0.922
0

0.904
0

0.925
4

0.914
9

0.998
9

0.996
3

0.8038
0.8121

0.9992
0.9992

0.9665
0.9651

0.9998
0.9998

8.2
8.2

0.9306
0.9299

 HE SO PI IO BR VE VO WD CG WI HI DE RANK
LM-PD-
DE

0.918
0

0.940
8

0.814
6

0.988
2

0.991
4

0.948
4

0.993
9

0.995
9

0.807
6

0.999
3

0.958
4

0.999
1

2.9

OS 0.914
6

0.959
5

0.822
4

0.979
9

0.992
5

0.942
5

0.987
3

0.997
1

0.813
4

0.998
4

0.964
7

1.000
0

3.2

ORD 0.918
0

0.912
6

0.805
8

0.987
1

0.991
2

0.946
9

0.992
4

0.995
2

0.752
3

0.998
8

0.943
3

0.998
6

5.2

KNORA 0.919
7

0.925
0

0.817
3

0.986
3

0.991
6

0.950
0

0.993
5

0.995
8

0.811
9

0.999
1

0.959
5

0.999
2

2.5

SFFS1 0.908
1

0.900
7

0.819
3

0.986
2

0.991
0

0.948
9

0.991
1

0.994
2

0.804
2

0.998
5

0.953
2

0.999
2

5.1

SFFS2 0.913
7

0.897
8

0.820
6

0.986
3

0.991
2

0.947
5

0.993
0

0.995
8

0.802
7

0.999
2

0.954
1

0.999
2

4.5

SFFS3 0.917
7

0.913
4

0.817
4

0.987
4

0.991
5

0.948
7

0.992
3

0.995
1

0.807
6

0.998
3

0.947
9

0.999
2

4.4

In Table 3 we test methods for pruning LMF-PD-DEC:
• ORD: the pruning method proposed in [25]. We retain the

100 best classifiers.
• KNORA: as proposed in [26].
• SFFS1: SFFS for selecting 100 classifiers; the fitness

function is the AUC obtained by the ensemble in the
training set.

• SFFS2: SFFS for selecting 100 classifiers; the fitness
function is the AUC obtained by the ensemble in the
training set + AUC obtained by the stand-alone classifier
that we are choosing to decide whether to add or not to
add it in the ensemble, in the training set.

• SFFS3: SFFS for selecting 100 classifiers; the fitness
function is the AUC obtained by the ensemble in the
training set and the Q-statistic3 among the selected
classifiers.

Analyzing the results reported in Table 3, we can conclude
that only KNORA permits a slight performance improvement.
Unfortunately, all the pruning methods reduce performance.
We also tested other methods, such as using a genetic
algorithm for weighing each classier or the pruning method
reported in [27], but they obtained even lower performances.

As stated above, in our opinion the extremely high
performance of LM-PD-DE is so high that it probably cannot
be improved. It may be the case that pruning methods using it
should be studied using very large datasets where a large
validation set could be extracted.

In Table 4 we compare our approach with several other state-
of-the-art approaches (for a fair comparison we used the
MATLAB code shared by the original developers of each
method). Each cell in Table 4 contains two values: the first is
the performance obtained using the standard approach, and the
second is the performance obtained using a random subspace
of 50 classifiers. FUS is the fusion by sum rule of GPC and
our LM-PD-DE. Our aim is to investigate whether a
heterogeneous ensemble improves the two highest performing
systems.

We compare the following methods in experiment 4:
• Real: RealAdaboost as implemented in GML AdaBoost

Matlab Toolbox using the decision tree as classifier [28];
• Gentle: GentleAdaboost as implemented in GML AdaBoost

Matlab Toolbox using the decision tree as classifier [29];
• Modest: ModestAdaboost as implemented in GML

AdaBoost Matlab Toolbox using the decision tree as
classifier [30];

• AdaN: AdaBoost.M2 using the neural network as classifier.
• ELM [31]: Extreme Learning Machine where the type of

activation and the number of hidden neurons is optimized
in each dataset http://www3.ntu.edu.sg/home/egbhuang/

3 It is a measure of the statistical independence among a set of
classifiers

• GP4: the Gaussian process classifier [32].
• Gasen [33]: selective ensemble method using genetic

algorithm to select a subset of neural networks
http://lamda.nju.edu.cn/datacode/GASEN/gasen.htm. As
the validation set, we have tested two methods: 1) all the
training set; and 2) a subset of patterns is extracted from the
training set and used as validation set. For each dataset we
have reported only the best method.

• RA-we: the ensemble of modified RealAdaboost proposed
in [34]; in this approach the neural network is used as
classifier.

Analyzing the results reported in Table 5, we observe:
• GPC obtains a performance that is similar to SVM,
• It is very interesting to note that RS ensembles are shown to

be very useful when coupled with some methods. Gasen,
ELM and several kinds of AdaBoost (all, except RA-we)
are greatly improved when coupled with random
subspace.

We want to stress that the fusion method named FUS
outperforms a finely tuned ensemble of SVMs, where a
different kernel is used for each dataset along with a different
set of parameters.

5 Conclusion and Discussion
 The goal of this paper was to discover methods for building
a generalized ensemble of classifiers requiring little or no
parameter tuning that performs well across an array of
different problems. We performed an empirical comparison of
several multiclassifier systems using several benchmark
datasets that address very different problems. Our
experimental results show that our new ensembles of decision
trees outperform state-of-the-art stand-alone and ensemble
methods.

Unfortunately, it was not possible for us to find a single
ensemble method that outperformed all the other classifiers
across all the tested datasets (the "no free lunch" theorem).
Nonetheless, some practical findings are reported. We show
that the highest performance is obtained by combining a
“supervised” RS with a cluster-based input decimated
ensemble and the principal direction oracle.
.
6 References
[1] Kuncheva, L. I., and Whitaker, C. J., “Measures of

Diversity in Classifier Ensembles and their Relationship

4 The software is available at http://www.gaussianprocess.org/gpml/,

the parameters are set loghyper = [0.0; 2.0];

http://www.gaussianprocess.org/gpml/

with the ensemble accuracy,” Machine Learning, vol. 51,
no. 2, pp. 181-207, 2003.

[2] Kittler, J., “On combining classifiers,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 20, no.
3, pp. 226–239, 1998.

[3] Breiman, L., “Bagging predictors,” Machine Learning,
vol. 24, no. 2, pp. 123-140, 1996.

[4] Martínez-Muñoz, G., and Suárez, A., “Switching class
labels to generate classification ensembles,” Pattern
Recognition, vol. 38, no. 10, pp. 1483 – 1494, 2005.

[5] Melville, P., and Mooney, R. J., “Creating Diversity in
Ensembles Using Artificial, Information Fusion,” Special
Issue on Diversity in Multiclassifier Systems, vol. 6, no. 1,
pp. 99-111, 2005.

[6] Freund, Y., and Schapire, R. E., “A decision-theoretic
generalization of on-line learning and an application to
boosting,” Journal of Computer and System Sciences, vol.
55, no. 1, pp. 119 - 139, 1997.

[7] Bologna, G., and Appel, R. D., "A comparison study on
protein fold recognition." pp. 2492-2496.

[8] Ho, T. K., “The random subspace method for constructing
decision forests,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 20, no. 8, pp. 832-844,
1998.

[9] Nanni, L., “Cluster-based pattern discrimination: A novel
technique for feature selection,” Pattern Recognition
Letters, vol. 27, no. 6, pp. 682-687, 2006.

[10] Tumer, K., and Oza, N. C., “Input decimated Ensembles,”
Pattern Analysis Application, vol. 6, pp. 65-77, 2003.

[11] Nanni, L., and Lumini, A., “Ensemble generation and
feature selection for the identification of students with
learning disabilities,,” Expert System with Applications,
vol. 36, no. 2, pp. 3896-3900, 2009.

[12] Lan, H., Carson, R., Provart, N., and Bonner, A.,
“Combining classifiers to predict gene function in
arabidopsis thaliana using large-scale gene expression
measurements,” BMC Bioinformatics, vol. 8, pp. 358,
2007.

[13] Breiman, L., “Random Forest,” Machine Learning, vol.
45, no. 1, pp. 5-32, 2001.

[14] Rodriguez, J. J., Kuncheva, L. I., and Alonso, C. J.,
“Rotation forest: a new classifier ensemble method,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 10, pp. 1619-1630, 2006.

[15] Zhang, C.-X., and Zhang, J.-S., “RotBoost: a technique
for combining Rotation Forest and AdaBoost,,” Pattern
Recognition Letters, vol. 29, no. 10, pp. 1524-1536, 2008.

[16] Kuncheva, L. I., Combining pattern classifiers: Methods
and algorithms, New York: Wiley, 2004.

[17] Polikar, R., DePasquale, J., Syed Mohammed, H., Brown,
G., and Kuncheva, L. I., “Learn++.MF : A Random
Subspace Approach for the Missing Feature Problem,”
Pattern Recognition, vol. 43, no. 1, pp. 3817-3832, 2010.

[18] Peterson, L. E., and Coleman, M. A., “Principal direction
linear oracle for gene expression ensemble classification,”
in Computational Intelligence Approaches for the
Analysis of Bioinformatics Data (CIBIO07), 2001.

[19] Xiaofei, H., Cai, D., Yan, S., and Zhang, H.-J.,
"Neighborhood preserving embedding."

[20] Nanni, L., and Franco, A., “Reduced Reward-Punishment
Editing for building ensembles of classifiers,” Expert
Systems With Applications, vol. 38, no. 3, pp. 2395-2400,
2011.

[21] Yaslan, Y., and Cataltepe, Z., “Co-training with Relevant
Random Subspaces, ,” Neurocomputing, vol. 73, no. 10-
12, pp. 1652-1661, 2010.

[22] Su, X., Khoshgoftaar, T. M., and Zhu, X., “VoB
predictors: Voting on bagging classifications,” in ICPR,
2008, pp. 1-4.

[23] Rodríguez, J. J., and Kuncheva, L. I., “Naïve Bayes
Ensembles with a Random Oracle,” in MCS, 2007, pp.
450-458.

[24] Kuncheva, L. I., and Rodríguez, J. J., “Classifier
ensembles with a random linear oracle,” IEEE
Transactions on Knowledge and Data Engineering, vol.
19, no. 4, pp. 500-508, 2007.

[25] Martinez-Munoz, G., Hernandez-Lobato, D., and Suarez,
A., “An analysis of ensemble pruning techniques based on
ordered aggregation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 2, pp.
245-259, 2008.

[26] Ko, A. H. R., Sabourin, R., and de Souza Britto Jr., A.,
“From dynamic classifier selection to dynamic ensemble
selection,” Pattern Recognition, vol. 41, no. 5, pp. 1718-
1731, 2008.

[27] Zhang, L., and Zhou, W.-D., “Sparse ensembles using
weighted combination methods based on linear
programming,” Pattern Recognition, vol. 44, no. 1, pp.
97-106, 2011.

[28] Schapire, R. E., and Singer, Y., “Improved boosting
algorithms using confidence-rated predictions,” Machine
Learning, vol. 37, no. 3, pp. 297-336, 1999.

[29] Friedman, J., Hastie, T., and Tibshirani, R., “Additive
logistic regression: A statistical view of boosting,” The
Annals of Statistics, vol. 38, no. 2, pp. 337–374, 2000.

[30] Vezhnevets, A., and Vezhnevets, V., “'Modest AdaBoost'
- Teaching AdaBoost to Generalize Better,” in Graphicon,
Novosibirsk Akademgorodok, Russia, 2005.

[31] Huang, G.-B., Wang, D. H., and Lan, Y., “Extreme
learning machines: A Survey,” International Journal of
Machine Leaning and Cybernetics, vol. 2, no. 2, pp. 107-
122, 2011.

[32] Rasmussen, C. E., and Williams, K. I., Gaussian
Processes for Machine Learning: The MIT Press, 2006.

[33] Zhou, Z.-H., Wu, J., and Tang, W., “Ensembling neural
networks: many could be better than all,” Artificial
Intelligence, vol. 137, no. 1-2, pp. 239-263, 2002.

[34] Gómez-Verdejo, V., Arenas-García, J., and Figueiras-
Vidal, A. R., “Committees of Adaboost ensembles with
modified emphasis functions,” Neurocomputing archive,
vol. 73, no. 7-9, pp. 1289-1292, 2010.

	A Combination of Methods for Building Ensembles of Classifiers
	1 Introduction
	2 Multiclassifier Systems
	3 System architecture
	3.1 System ensemble methods

	4 Experimental results
	5 Conclusion and Discussion
	6 References

